Mathematical Modelling

Mathematical modelling is a research method that can inform public health planning and infectious disease control. Through complex simulations of real-world possibilities, mathematical modelling provides a cost-effective and efficient method to assess optimal public health interventions.

COVID-19 Models from the Public Health Agency of Canada

The Public Health Agency of Canada (PHAC) has shared information with Canadians from their COVID-19 modelling work. The results from the data indicate that it is critical and essential to physically distance, detect and isolate cases of COVID-19, identify and quarantine close contacts, and prevent international infection from entering the country.

NCCID supports an expanding area of knowledge translation and exchange related to mathematical modelling for public health.

This has included bringing modellers, public health practitioners, and decision-makers together to respond to public health priorities such as influenza, sexually transmitted infections, tuberculosis and now, COVID-19. We build awareness for the value of modelling research for infectious disease public health to introduce more public health professionals to modelling research. By making modelling terms and research more accessible, we bridge knowledge silos. Using case studies, we demonstrate how public health and modeller partnerships bring valuable and different roles and knowledge.

New work will help foster more modelling research and community partnerships to address research questions to reduce the inequitable burden of infectious diseases, particularly for rural and remote regions and communities.


One of the ways we support knowledge exchange is through mod4PH, a discussion forum and virtual meeting place for public health and mathematical modellers. Members promote the use of modelling research in public health decision-making for infectious disease prevention and control. Learn more about mod4PH and join the group on LinkedIn.

What’s New

Journal Papers

Toward standardizing a lexicon of infectious disease modelling terms

Improving public health policy through infection transmission modelling: Guidelines for creating a community of practice

Modelling COVID-19 Outbreaks

An international team of experts, led by Dr. Seyed Moghadas at York University in Canada, received a grant from the Canadian Institutes for Health Research for a data-driven modelling approach to describe COVID-19 outbreaks and assess the effectiveness of responses for populations in Canada, the US and India. NCCID is pleased to be a partner in this initiative and lead the knowledge translation and exchange aspects of this grant.

Key research outputs include the degree of surge capacity necessary to maintain safe and effective delivery of healthcare systems, estimates of clinical attack rates and likely inpatient flow, effectiveness and cost-effectiveness of intervention strategies and the expected reduction of disease outcomes, and the effect of social policies on reducing community transmission.

Collectively, the investigators bring expertise in disease dynamics, modelling and simulations, data analysis and statistical inference, public health and vaccination, knowledge translation, and infectious disease epidemiology. 

The team of Investigators include:

Seyed Moghadas (PI)
York University

Margaret Haworth Brockman (PI)
NCCID and University of Manitoba

Alison Galvani (@Alison_Galvani)
Yale University

David Champredon (@DChampredon)
Western University

Joanne Langley (@jmllhfx)
Dalhousie University

Sandip Banerjee
Indian Institute of Technology, Roorkee

Sandip Mandal
Indian Council of Medical Research

Dr. Yoav Keynan
NCCID and University of Manitoba


Past Events

Pan-InfORM – NCCID Workshop (2018)