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The National Collaborating Centre for Infectious Diseases is hosted by
the University of Manitoba, on the original lands of Anishinaabe, Cree, Oji-Cree,
Dakota and Dene peoples, and on the homeland of the Métis Nation.

At NCCID, we strive to honor the lands and their original caretakers in our work.
We acknowledge that we are on Treaty One land. We recognize that this and
other treaties, have been implemented as part of the process of colonization
intended to benefit some while harming others. We are committed to working
with our partners towards reconciliation.



Housekeeping

Seminar recording and presentation slides will be available shortly after the
seminar at the NCCID website: https://nccid.ca/.

If you have technical problems with Zoom, please email us at
nccid@umanitoba.ca.

The chat box for participants has been disabled for this session.
We will use the chat box to share additional information.

Please use the Q&A tab to submit your questions for our speakers.

You can “like” other people’s questions to push them up in priority.
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Accreditation

Surveillance Advances is a self-approved group learning activity (Section 1) as
defined by the Maintenance of Certification Program of the Royal College of
Physicians and Surgeons of Canada.

The seminar series is also approved by the Council of Professional Experience
for professional development hours for members of the Canadian Institute
of Public Health Inspectors.

If you would like a letter of participation, please complete the
survey which will be shared after the seminar.

- r-Twl
— I

A @

Q

|


https://www.freepik.com/free-vector/online-certification-illustration_8576345.htm#query=accreditation%20illustration&position=3&from_view=search&track=ais

Land Acknowledgment: PHAC

| would like to take this time to acknowledge the land that | live and work on is
the traditional territory of the Wendat, the Anishnaabeg, Haudenosaunee, Métis,
and the Mississaugas of the Credit First Nation.

It is home to many First Nations, Métis, and Inuit peoples. | am grateful for the
opportunity to share their home.
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Learning Objectives

By the end of this seminar, you will be able to:

« Understand how Al, data science, and mathematical solutions can be
used responsibly to improve public health surveillance and response to
emerging and re-emerging infectious disease outbreaks

« Understand the feasibility and benefits of using Al to enable real-time |
updates of transmission modeling with diverse incoming data streams b (

« Highlight the accuracy benefits secured by incorporating wastewater data QY |
sources among the real datasets used to ground models ' |

* Note the likely strong opportunities from jointly updating models of
multiple pathogens sharing common risk factors with cross-pathogen
surveillance data

Image by freepik on Freepik
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Google Trends

COVID-19 Cases

A great source of data is the number of times
people from a particular
province/community have searched Google
for a specific disease topic.

Google trends in a particular region is
strongly correlated with the number of
disease cases in that area, in most cases.

In most cases, Google trends even peak
earlier than the actual disease cases.
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Google Trends

* Number of Google searches on a particular
disease topic is almost always strongly
correlated with the number of cases.

Canada - Influenza, Corr.= 0.45, p-value= 1.1e-39
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Google Trends

* In addition to the number of searches, the
rate of its increase or decrease is another
indicator of the number of cases rising or
falling.

Interest over time @)

* Moreover, the second order rate, or the
concavity and convexity of the time series is
a great indicator of the number of cases
Increasing or decreasing.
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Google Trends

 The first and second order rates of the
Google trends are also correlated with the
number of cases.

British Columbia, Google Trends - First Order Rate, Corr.= 0.42, p-value= 3.8e-8

Alberta, Google Trends - First Order Rate, Corr.= 0.46, p-value= 1.04e-9
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Social Media

People are increasingly are using social
media to share their opinions and
experiences.

As number of cases increase, people discuss
the outbreak more on social media,
therefore, social media platforms such as
Reddit and Twitter are also a great source of
predicting outbreaks.
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Wiki Trends

* For some disease (e.g. COVID-19), a separate
Wikipedia page is available for different countries.

« The number of views on a specific page which could
be retrieved using Wiki Trends rest APl is also an
indicator for the number of cases.

* For most countries Wikitrends is also well correlated
with the number of cases.

« Sometimes Wikitrends peaks earlier than the
number of cases.

Canada - WikiTrends
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News

* Volume of news released on a particular disease could
also be used as an indicator of the number of cases.

« The number of Google news released in a particular
country for a certain keyword, which could be
retrieved using Google news API is mostly well
correlated with the number of cases.

Canada - Google News - Corr=0.24, p-value= 0.002
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Satellite Data

« Multiple parameters could be obtained using satellite
data including (but not limited to):

Climate: factors such as annual temperature,
annual rainfall, isothermality, diurnal range
temperatured etc could be obtained using climate
data.

Surface temperature: sensors provide surface
temperature and emissivity information. Vector
born diseases could be well correlated with surface
temperature data.




Satellite Data

« Multiple parameters could be obtained using satellite
data including but not limited to:

Weather data: factors such as temperature,
precipitation, snowfall, wind direction, gust,
humidity, etc. could be obtained using weather
data.

Air quality data: factors such as the concentration
of NO,, CO, SO,, O;, CH, could be obtained using
SENTINEL-5 mission, which is part of the European
Earth Observation Program.




Air Quality Data

Air quality parameters include

concentration of elements such as CO,
CO,, NO,, O;, CH,

Air quality parameters is correlated
with respiratory diseases such as
COVID-19 and Influenza.
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Weather Data

* Weather data includes parameters
such as temperature, humidity,
rainfall, wind speed, gust, etc.

« Weather data is correlated with
Influenza cases.
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Community Health Data
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Flow-Diagram

The flow diagram includes three blocks:

1. Data Ingestion:

«  For each province, multiple sources of data are
treated as time-series, and stored into tensors.

« The preprocessing includes replacing missing data
with zero, specifying the features and the labels, and
finally, center and scaling the values.

2. Build the Graph:

 The nodes and their data, the edges and weights are
defined.

« The train and test time-series of each node is
prepared.

3. Train Model:

* In each node, the data of the neighbors are
combined and the result goes through an RNN
model which is CNN-GRU.

« The model is trained and then tested.
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Canada: 14 Step-Ahead Prediction

« COVID-19 cases of different provinces of Canada are available on weekly basis.
« The final model predicts COVID-19 waves of all the provinces very well.

Alberta, R-square= 0.6941, RMSE= 0.0961 Quebec, R-square= 0.5568, RMSE= 0.09633
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Forecasting Influenza

Influenza Cases

Influenza Cases

Influenza waves have been predicted for different

countries with an outstanding accuracy.
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Forecasting Lyme Disease

« The etick dataset was used as an indicator of Lyme diseases prevalence in different provinces.
« Our model is able to predict the volume of ticks for different provinces with an outstanding accuracy.

Ontario (14-Steps-Ahead Prediction) R-square= 0.7152, RMSE= 0.0081
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Resemblance between Historical Colonialism and
Current Data Colonialism

Historical Colonialism Current Data Colonialism

Appropriation of natural resources Appropriation [and quantification] of
human life (through datafication)

Expropriation of land, resources, bodies  Expropriation of social life (e.g., social
media) and bodies (e.g, l0T is upcoming)
» People are “just there” for capital to
“discover” and exploit

Exploitation through industrial capitalism Exploitation through Al capitalism
(commodification of human life)



Our Framework
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Conclusion

* An agile early warning, alert, and response system (like Al-Epidemix) Is
paramount for controlling and containing infectious disease.

« Multiple sources of data (e.g. Google trends, social media, satellite data, and
street view images) are collected on regional/community level.

* Machine learning methods, particularly Recurrent Neural Networks and
Graph Neural Networks are utilized to forecast emerging and re-emerging
diseases.

« The framework will assist policy-makers, health officials, as well as physicians
by accurately forecasting various disease outbreaks.



Service Delivery from Models:

Real-time Multipathogen Epidemiology &
Acute Care Demand Monitoring and
Nowcasting via PMCMC-Leveraged
Transmission Models

Dr. Nathaniel Osgood pPhD

Computational Epidemiology & Public Health Informatics Laboratory
University of Saskatchewan
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Wastewater
Epidemiology

Image source:

Kumar, M., Mohapatra, S.,
Mazumder, P. et al. Making Waves
Perspectives of Modelling and
Monitoring of SARS-CoV-2 in
Aquatic Environment for COVID-19
Pandemic. Curr Pollution Rep 6,
468-479 (2020).
https://doi.org/10.1007/s40726-020-
00161-5
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https://doi.org/10.1007/s40726-020-00161-5

Wastewater

Data Viral RNA load of SARS-CoV-2 in wastewater, Saskatoon
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Reflections

« Unassisted, all models diverge from empirical situation as time passes.
« Divergence between model state & empirical state

« Some relevant challenges: Stochastics, exogenous changes,
approximations, omissions, heterogeneity ...

« Divergence can strongly limit effectiveness of model evaluation of
intervention tradeoffs.

« Merely adjusting parameters will not support ongoing alignment between
model & empirical data.



Making Sense of the Evidence: Dynamic Models as
Always-Updated Services

« Render current understanding of natural history of infection & diverse
incoming data sources into evolving integrated picture of underlying current
epidemiology

* Changes in behaviour

« Count of undiagnosed infectives
« Force of infection

* Regional distribution of cases

« Effective reproductive number

* Projection forward over days & weeks from current situation

« Capacity to evaluate policy scenarios for public health & acute care needs,
looking forward from current situation
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Highest-level Points

« These are not curve-fitting models. Instead, they ask “what's going on?” in terms of
the underlying situation (in light of theory & observations to the present).

« The model uses Bayesian probability & dynamic models to identify a coherent
understanding — consistent with clinical/epidemiologic understanding of COVID-19 -
about the current situation that best explains what is observed across many types of
data (e.g., cases, test volumes, hospital admissions, hospital census, etc.).

« Any one type of data reflects a different facet of this underlying situation

« This process involves Al inference from observed data in ways that square with
understanding of COVID-19 natural history & epidemiology (as captured in model).

« Because the models infer the underlying situation consistent with theory, they can
project forward with & without additional interventions/measures.

« These projections are not projecting forward curves — they are projecting the
‘momentum” of the situation.



Adaptive Planning: Observing Unfolding Evidence
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Uses of the Particle Filter Model & PMCMC Models

« Population tomography: Providing a consensus probabilistic interpretation (via a joint
distribution) the situation now and in the past

* Projection/Forecasting: Projection forward from now with model dynamics and
“status quo” or diffusive assumptions concerning active testing, contact patterns, etc.

« Backcasting: Historical reconstruction based on earlier & later data

« Policy evaluation: Evaluation of intervention portfolios, exogenous scenarios or other
“what if” possibilities using a consistent picture from the latest evidence



15.848

31.696

55.468

New Reported Confirmed or Suspected Cases

distribution

Empirical
Confirmed &
Suspected Cases

71.316

(On Log2 Color Scale)

Model

024 —

8 8§ 8 8§ 8§ 8 8
& 2 ‘?3 ,8_ Eautn?hain:% g

chartHist2DNewReportedConfirmedOrSuspectedCasesS

|
w
&
ampledParticles

269.416 —

285.264 —

309.036 —

324.884

348.656 —

364.504 —

388.276 —

15

10

New Reported Confirmed or Suspected Cases

3.0

2.5

2.0

1.5

— 1.0

— 0.5

— 0.0
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Generative View
of Unmeasured
Quantities
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Advantages

« Obtain unified, system-wide picture consistent with natural history of infection from
diverse data sources

« Capacity to estimate both underlying epidemiological state & parameters
« Ready ability to layer in support for new data sources

« Tolerance for missing, and various quality levels of data

« Applicability to wide variety of epidemiological models

« Whole greater than the sum of the parts: Capacity to sharpen the estimates for any one
infection by considering data from multiple pathogens with common drivers

« Viability of scalable real-time model-assisted epidemiological & behavioural surveillance
frameworks consuming diverse data, including for multiple pathogens
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Conclusions

* Models gain much additional value if used for service provision with ongoing updates

« Combining Bayesian Al/machine learning algorithms theory based models allows for “always
updated” models to understand current situation & project forward

« Such methods are synergistic with large-scale data collection using high-velocity versions of
traditional (e.g., testing) and novel (e.g., wastewater) information

* In the presence of aggregate dynamic models, particle filtering for COVID-19 can perform well
both at the national, regional and local levels

« Such methods supports integration of diverse time series, including WW, SM & Sear
« With contemporary parallel & distributed computing, daily updating is readily possible

« Appropriate reporting pipelines can allow for scalable, efficient data ingestion & reporting and
interactive exploration to inform decision making

« Whole is greater than sum of the parts: Early work suggests that use of data from multiple
pathogens with common risk factors sharpens analysis of any one risk factor



Discussion Period
Any questions?
Please use the Q&A tab to submit your questions for

our speakers. You can “like” other people’s questions to
push them up in priority.
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Thank You!

Join us on Tuesday, January 30,
2024 (1:00-2:00pm ET) for the next
seminar!

Please complete our survey that will be shared shortly
after the seminar. Scan the QR code.

Seminar recording and presentation slides will be posted
on https://nccid.ca/ within two weeks.

Visit https://nccid.ca/surveillance-advances-seminar-series/
for more information about the Surveillance Advances
seminar series.
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