

# A review of alternative practices to antimicrobial use for disease control in the commercial feedlot

Ribble CS, Stitt T, Iwasawa S, Toews L, Stephen C

Centre for Coastal Health 900 5<sup>th</sup> Street, Nanaimo BC V9R 5S5



#### Canadian Cattle Herd

- 11.1 million beef cattle nationally (July 2008)
  - 44% raised/fed in Alberta
  - 3.46 million head of cattle fed for slaughter nationally, 2.29 million in Alberta alone
  - 11 feedlots with capacities >20,000 head of cattle each can accommodate up to 34.9% (~ 796,000 head) of all the cattle on feed in Alberta (as of 2000)
- Canada's global 'footprint'
  - 12<sup>th</sup> for beef cattle production
  - 3<sup>rd</sup> largest exporter
- Annual US per capita red meat consumption: ~27 kg













#### Infectious Disease in the Feedlot

- Timing of major causes of morbidity and mortality in North American feedlots
  - Within 2-3 weeks post-arrival, associated with:
    - Pneumonia
  - Later in the feedlot cycle, attributed to:
    - Histophilus somnus, AIP, bloat, liver abscess
  - Majority of antimicrobial use on feedlots is within the first 30 days post-arrival
- For every 1000 calves entering a feedlot, approximately:
  - 7.2 die from pneumonia
  - 2.9 die of digestive tract disorders
  - 2.5 die from other causes



# Antimicrobials/AMR in the Feedlot

- Antimicrobials are used in feedlots for
  - Disease prevention (metaphylaxis)
  - Disease control (parenteral therapy)
  - Growth promotion (in-feed)
- Level and cause of AMR in feedlots is under debate
- In Canada, production is concentrated in a relatively small number of producers predominantly located in Alberta & Saskatchewan
- Opportunities exist for significant impact on the control of AMR's if new best practices for infection control can be identified and implemented



# Our Objectives

- Are there management practices that reduce the incidence of:
  - Illness and mortality due to pneumonia, especially in highrisk feedlot calves, but do not involve the administration of antimicrobials?
  - Liver abscesses in feedlot cattle, but do not rely on in-feed or sub-therapeutic antimicrobial use?
- Assumption:
  - By reducing antimicrobial use, one would reduce the potential for antimicrobial resistant bacteria to emerge and persist in the feedlot setting









- 2820 unique abstracts from 5 search engines
- 387 papers identified as relevant

| Subject Category                                        | Number of papers | Percent of total |
|---------------------------------------------------------|------------------|------------------|
| Management to reduce feedlot disease                    | 142              | 37               |
| Background and introduction papers                      | 76               | 20               |
| AMR studies involving E.coli/Salmonella/Campylobacter   | 73               | 19               |
| Effect of therapeutic use of antibiotics in feedlot     | 34               | 9                |
| Does AMR increase or decrease in the feedlot?           | 22               | 6                |
| Reducing pathogen load in the feedlot                   | 14               | 4                |
| Management to reduce antimicrobial use                  | 13               | 3                |
| Effect of sub-therapeutic use of antibiotics in feedlot | 7                | 2                |
| AMR causes                                              | 6                | 2                |
| Total                                                   | 387              |                  |

| Management to reduce feedlot disease sub-categories | Number of papers | Percent of total |
|-----------------------------------------------------|------------------|------------------|
| Risk factors for disease development at the feedlot | 36               | 25               |
| Vaccination upon arrival at the feedlot             | 33               | 23               |
| Disease and infection management at the feedlot     | 28               | 20               |
| Nutritional management                              | 17               | 12               |
| Pre-conditioning & vaccination before the feedlot   | 14               | 10               |
| Other                                               | 14               | 10               |
| Total                                               | 142              |                  |

| Risk factors for disease development at the feedlot sub-categories | Number of papers | Percent of total |
|--------------------------------------------------------------------|------------------|------------------|
| Pathogens                                                          | 20               | 56               |
| General                                                            | 10               | 28               |
| Behaviour                                                          | 3                | 8                |
| Mixing                                                             | 2                | 6                |
| Transportation                                                     | 1                | 3                |
| Total                                                              | 36               |                  |



#### Risk Factor Papers

- Some observational studies were useful for:
  - Understanding the epidemiology of bacterial diseases in the feedlot
  - Developing hypotheses about alternative disease management strategies
- Risk factors for respiratory disease:
  - Recently weaned calves 6-8 months old, from multiple farms that are sold through & commingled in auction marts
  - Higher occurrences of pneumonia in late October & November
- Feedlots use these variables to:
  - Classify incoming calves as high risk
  - Treat them with metaphylactic antimicrobials at arrival



#### Vaccination on Arrival

- Only 7/33 (21%) relevant papers passed our exclusion criteria
  - The protective effect of vaccines vary with pathogen, animal source and type of vaccine administered
  - Vaccination generally does not eliminate the target disease, but can sometimes reduce morbidity, mortality and/or treatment costs
  - Many vaccine trials resulted in inconclusive, marginally significant or no demonstrable benefit
  - No study was found that evaluated the contribution of vaccination to reducing AMR in feedlots.
- High incidence of BRD despite routine on-arrival vaccination
- Therefore, antimicrobial agents continue to be used on-arrival in high-risk calves



# Disease & Infection Management

- 28 papers with highest likelihood of presenting information about management techniques not involving vaccination, nutrition, or antimicrobial use
  - 9 presented evidence from new data collected by the authors
  - None provided useful information for the design of effective disease management strategies for the large modern feedlot



# Nutritional Management

- Liver abscesses are one of the most commonly cited reasons for the use of in-feed antimicrobials in feedlots
- 10 papers dealt specifically with liver abscesses
- Vaccination for this bacterial disease has had mixed results
- Medicated feeds remain the most common approach to reducing the prevalence and severity of liver abscesses due to:
  - The absence of effective vaccination
  - Current feeding protocols require rapid transition to high energy feeds



# Preconditioning

 Some evidence that vaccination & weaning of calves at their source cow-calf farms several weeks prior to being shipped to a feedlot reduces disease at the feedlot

#### However:

- Consistency and size of the effect has been difficult to establish, at least in part due to design challenges
- Historical inability of the auction market transfer system to consistently provide a premium for vaccinated calves
- Preconditioning has not become an effective disease management strategy for feedlot owners in North America



#### Recommendations

- Establish a working group of stakeholders to look for funding sources for
  - intervention studies to test the effectiveness of disease control strategies not involving antimicrobial use
  - basic epidemiological studies of the bacterial diseases in the feedlot
  - research on antimicrobial use strategies
- Explore how real and widespread the so-called 'November effect' is, how much AMR might have to do with the phenomenon and, ultimately, what to do about it
- Examine which triggers for mass medication are most effective while limiting the overall 'load' of mass medication



#### Recommendations

- Examine long-term effects of metaphylactic antimicrobial use in the feedlot on treatment efficacy and AMR within and across different feedlots
- Liaison with researchers already exploring antimicrobial cycling or rotation in human hospital settings
- A program of multiple methods that can be applied in an adaptive fashion is needed



# Questions?



#### **AMR Studies in Feedlots**

- 23 papers published between 1988 and 2009
  - Only 2 papers looked at bovine respiratory pathogens

| Administered Antimicrobial | VDDC   | Typical Feedlot Use            | Number of<br>Papers* |
|----------------------------|--------|--------------------------------|----------------------|
| None                       |        |                                | 8                    |
| Monensin                   | IV     | Growth promotion, in-feed      | 7                    |
| Tylosin                    | IV     | Growth promotion, in-feed      | 6                    |
| Chlortetracycline          | Ш      | Growth promotion, in-feed      | 5                    |
| Sulfamethazine             | Ш      | Growth promotion, in-feed      | 4                    |
| Oxytetracycline            | II/III | Both                           | 4                    |
| Virginiamycin              | IV     | Growth promotion, in-feed      | 2                    |
| Tilmicosin                 | II     | Respiratory disease, injection | 2                    |
| Florfenicol                | Ш      | Respiratory disease, injection | 1                    |
| Procaine Penicillin        | I      | Respiratory disease, injection | 1                    |
| Trimethoprim               | Ш      | Respiratory disease, injection | 1                    |
| Tetracycline               | Ш      | Growth promotion, in-feed      | 1                    |

<sup>\*</sup> Some papers evaluated multiple antibiotics VDDC: Veterinary Drug Directorate's Categorization of Antimicrobial Drugs based on the Importance in Human Health.

| Evaluated Organism    | Number of<br>Papers* |
|-----------------------|----------------------|
| Escherichia coli      | 10                   |
| Campylobacter sp.     | 5                    |
| Salmonella sp.        | 4                    |
| Enterococcus sp.      | 2                    |
| Pasteurella multocida | 2                    |
| Not identified        | 2                    |
| Histophilus somni     | 1                    |
| Leptospira hardjo     | 1                    |
| Mannheimia hemolytica | 1                    |
| Yersinia sp.          | 1                    |

<sup>\*</sup> Some papers evaluated multiple organisms

2/10/2010

16



# AMR Studies in Feedlots (continued)

| Method of Antibiotic Use | Timing of Antibiotic Use  | Number of Papers* |    |
|--------------------------|---------------------------|-------------------|----|
| In-feed                  | Continual                 |                   | 10 |
| Injectable               | Initial treatment for BRD |                   | 4  |
| Not identified           | Not identified            |                   | 10 |

<sup>\*</sup> One paper evaluated multiple methods and timing

| Type of Study                       | Number of Papers |
|-------------------------------------|------------------|
| Clinical trial                      | 1                |
| Cross sectional study               | g                |
| Longitudinal study                  | 2                |
| Prospective cohort study            | g                |
| Retrospective cross sectional study | 1                |

| Location of Study     | Number of Papers |    |
|-----------------------|------------------|----|
| Closed Beef Herd      |                  | 1  |
| Commercial Feedlot    |                  | 12 |
| Diagnostic Laboratory |                  | 1  |
| Research Facility     |                  | 9  |















# Beef cattle antimicrobial treatment guidelines (CVMA, 2008)

| Disease          | <b>Microbial Agents</b> | Treatment Options               | VDDC |
|------------------|-------------------------|---------------------------------|------|
| Bacterial        | Mannheimia              | Florfenicol                     | III  |
| pneumonia        | haemolytica             | Oxytetracycline dihydrate       | III  |
| undifferentiated | Pasteurella multocida   | Oxytetracycline hydrochloride   | II   |
| respiratory      | Histophilus somni       | Tilmicosin                      | II   |
| disease          | Mycoplasma bovis        | Trimethoprim-sulphadoxine       | II   |
| Mycoplasma       | Mycoplasma spp.         | Tulathromycin                   | II   |
|                  |                         | Ceftiofur hydrochloride         | 1    |
|                  |                         | Ceftiofur sodium                | I    |
|                  |                         | Ceftiofur crystalline free acid | 1    |
|                  |                         | Danofloxacin                    | I    |
|                  |                         | Enrofloxacin                    | I    |

VDDC: Veterinary Drug Directorate's Categorization of Antimicrobial Drugs based on the Importance in Human Health.