November 2013

Antiviral Therapy for Pandemic Influenza A (H1N1) Infection: a Meta-Analysis

Mark Downing, Po-Po Lam, Allison McGeer University of Toronto

Abstract

The influenza A (H1N1) pandemic has generated a large volume of cohort data with respect to antiviral therapy, but to date this has not been systematically reviewed. We performed a meta-analysis of all studies of laboratory-confirmed pH1N1 influenza infection in adults and children which correlated antiviral therapy with hospitalization, ICU admission or death. Early antiviral therapy (<48 hours from symptom onset) was associated with a statistically significant decrease in ICU admission and death. There was no improvement in clinical outcomes when antiviral therapy in general was compared to no antiviral therapy. The literature on therapy for pandemic H1N1 (pH1N1) consists largely of observational studies and is insufficient to draw strong conclusions about the effectiveness of antiviral therapy.

Introduction

Currently available antiviral agents against influenza infection include inhibitors of the matrix 2 protein (adamantanes: amantadine and rimantadine) and neuraminidase inhibitors (oseltamivir and zanamivir). Neuraminidase inhibitors have emerged as the treatment of choice for a number of reasons. Adamantanes lack activity against all strains of influenza B, the 2009 pandemic influenza A (H1N1) (pH1N1), and current seasonal H3N2 influenza strains, whereas neuraminidase inhibitors are active against the great majority of currently circulating strains (1). Several randomized controlled trials have documented reduction in duration of illness, in the severity of illness and in viral shedding associated with early therapy with a neuraminidase inhibitor in healthy outpatients with seasonal influenza (2-6). A recent systematic review concluded that when patients initiate treatment within 48 hours of the onset of symptoms, the duration of illness is decreased by one day (7).

The question of whether neuraminidase inhibitors reduce complications associated with influenza (lower

respiratory tract infection [LRTI], hospitalization, ICU admission, and death) is much more controversial. Data in this regard come largely from one meta-analysis of a combination of ten published and unpublished studies, which demonstrated a reduction of 26% in antibiotic use. a reduction of 55% in LRTI, and a reduction of 59% in hospitalization (8). Restriction of the analysis to published studies failed to demonstrate a benefit (7). The in vitro data, evidence of effectiveness in symptomatic relief in mild to moderate influenza, evidence of effect on viral shedding, and low rates of adverse events have resulted in a reluctance among experts to randomize seriously ill patients to placebo in putative clinical trials, creating a significant barrier to improving the understanding of the utility of these drugs in more seriously ill patients.

The 2009 H1N1 pandemic was associated with a dramatic rise in antiviral use and posed a number of challenging questions. Although guidelines support the use of

National Collaborating Centre for Infectious Diseases

Centre de collaboration nationale des maladies infectieuses knowledge that's contagious!

Des saviors qui se transmettent!

neuraminidase inhibitors in most circumstances (1, 9) there remains a lack of evidence with regards to their efficacy in pH1N1 infection and in influenza associated with hospitalization and ICU admission. The data supporting effectiveness when used early in illness have also raised important questions about the utility of late initiation of therapy in hospitalized patients. Other important and unanswered questions concern the effect of antiviral therapy in certain populations, including the critically ill, children, and the immunocompromised. The objective of this study is to systematically review the data on antiviral therapy in pH1N1 infection.

Materials and Methods

We followed the meta-analyses of observational studies in epidemiology (MOOSE) guidelines for reporting our results (10).

Search strategy

We identified all relevant studies, searching OVID MEDLINE and EMBASE (from January 1st 2009 to January 26th 2011) with the help of an experienced librarian (detailed search strategy provided in Supplemental Data A). We also searched reference lists of included studies. Conference proceedings and abstracts were included in the search. We did not include theses, dissertations, or national or local vital statistics data not published as peer reviewed articles.

Study selection

Observational studies (cohort and case-control studies) or randomized trials that reported on rates of hospitalization, ICU admission or death in pediatric or adults patients with laboratory-confirmed pH1N1 infection were included. Laboratory

confirmed influenza infection was defined as a positive result for influenza by PCR, viral culture or rapid antigen test.

Exclusion criteria

The following types of studies were excluded: case reports and case series where the denominator population could not be determined; studies that reported outcomes other than hospitalization, death or ICU admission; studies in which outcomes could not be correlated with whether or not the patient received effective antiviral therapy; and studies in which influenza strains other than pH1N1 were (or might have been) included.

Selection

One review author (MD) inspected the abstract of each reference identified by the search and selected the studies for full review, and inspected all possibly relevant articles for inclusion.

Data extraction

Data from included studies were independently extracted by two review authors (MD and PL). Data from studies included year of publication, country of origin, characteristics of study population (adults, children, outpatient, hospitalized, ICU, immunocompromised), number of subjects included, and the specific antiviral used. Where possible, if cohorts included both children and adults, data from these groups were extracted separately. For the therapy analysis, patients were categorized based on whether or not they received effective antiviral therapy (a neuraminidase inhibitor), and whether or not therapy was started within 48 hours of the onset of symptoms. When abstracted data differed between reviewers, studies were reviewed again until a consensus was reached.

Outcome

The outcome measures of interest were death, ICU admission, or (for cohorts of patients who were initially outpatients) hospitalization.

Assessment of risk of bias

Risk of bias among included studies was assessed by MD using the Newcastle-Ottawa Scale (11).

Data synthesis and analysis

A priori, we planned a stratified

meta-analysis because of anticipated clinical heterogeneity among included studies. Subgroup categories were: adults versus pediatrics, and outpatients versus hospitalized patients. Strata with at least two eligible studies were synthesized by conducting a meta-analysis of incidence rates. Variances around estimates of incidence rates from various studies were calculated. The meta-analysis was performed using Review Manager software (RevMan version 5.0. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2008). Because we anticipated heterogeneity between studies, a random-effects model was used for all analyses. Statistical heterogeneity was initially inspected graphically (forest plot) and assessed by calculating tests of heterogeneity using the Cochran Q test (Chi-square test).

Results

Search Results

The initial search identified 4329 articles. After reviewing titles and abstracts, 335 articles were deemed to be potentially relevant and were reviewed in full. Thirty-eight publications were not accessible and 23 publications were not written in English. An additional 47 articles were added based on a review of references. Fiftyseven studies met all inclusion criteria and were used for the systematic review.

Characteristics of studies and patients

The publications consisted of 52 cohort studies, 3 case-control studies, and 2 conference abstracts. There were no randomized controlled trials or meta-analyses that met the inclusion criteria. There were 18 studies which included outpatient data, 34 studies limited to hospitalized patients, and 10 studies limited to ICU cohorts. As for patient demographics, 20 studies included adult cohorts, 13 studies used pediatric cohorts, and 22 studies did not differentiate children from adults in their analysis. Twelve studies consisted of immunocompromised patients (malignancy, immunosuppression or HIV).

The quality of the studies was assessed using the Newcastle Ottawa method. The selection bias was low in 25 studies, whereas it was moderate or high in the remaining 32 studies. No study attempted a multivariate analysis in order to control for confounders during their analysis of therapeutic effect. Forty of the studies documented adequate follow-up of their patients and included data at least regarding mortality.

Antiviral Therapy versus No Antiviral Therapy

The studies included in the metaanalysis are summarized in Table 1. There were 23 studies which included outpatient data. Of the 3459 patients in these studies, 2488 received antiviral therapy. The hospitalization rates were 39.3% in the treatment group and 17.3% in the non-treatment group. For the 47 studies that reported mortality data (4481 patients), the mortality rate was 16.3% in the treatment group and 15.5% in the nontreatment group. Figure 1 summarizes these studies and demonstrates no difference in mortality in all studies (OR 1.03 [0.73, 1.44]). Thirty-nine studies correlated antiviral therapy with ICU admission, and rates were 30.7% in the treatment group versus 11.8% in the non-treatment group.

For adults, 18 studies reported a cumulative mortality rate of 18.9% in 1280 patients receiving antiviral therapy versus 10.4% in 125 patients not receiving therapy (Figure 2). Restricting this to inpatient studies, the rates were 30.0% with treatment and 24.2% without treatment. Eighteen studies reported cumulative ICU admission rate of 43.0% in 942 patients receiving therapy versus 19.5% in patients who did not receive therapy. There was only one study included in our analysis that was able to compare hospitalization rates in adult patients (12). This was a cohort of 788 pregnant women where the hospitalization rate in 541 patients who were treated was 68%, versus 61% in 74 patients who were not treated.

For children, 12 studies reported a cumulative mortality of 16.3% in 472 patients who received antiviral therapy versus 12.8% in 195 patients not receiving therapy (Figure 2). Restricting this to inpatients, the rates were 13.6% with treatment and 4.9% without treatment. Again, there was only one study that was able to compare hospitalization rates for pediatrics patients. This was a small cohort of 15 HIV-infected patients, where none of the 5 patients who received antiviral therapy (all within 48 hours) were hospitalized, compared to one of the 10 patients who did not receive therapy.

Early versus late initiation of antiviral therapy

We defined early initiation of therapy as within 48 hours of the onset of symptoms. Twenty-six studies used this criterion in differentiating outcomes based on timing of therapy. Figures 3 and 4 summarize their results. In the 18 studies that reported mortality, there was a statistically significant reduction in mortality in patients who were treated within 48 hours of onset of symptoms (11.6% versus 20.5%, OR 0.19 [0.05, 0.69]). Similarly there was also a significant reduction in ICU admission associated with early therapy (27.7% versus 36.8%, OR 0.23 [0.12, 0.45]). A subset analysis

of the studies involving only adult patients showed a similar trend in mortality (1.7% versus 18.9%, OR 0.07 [0.0, 1.14]) and ICU admissions (7.2% versus 29.9%, OR 0.19 [0.08, 0.44]). Only one pediatric study was able to compare early versus late therapy in terms of mortality, with a mortality rate of 3.7% in the early treatment group versus 12.6% in the late treatment group.

We also compared the high quality studies to the low- and moderatequality studies to determine if part of this effect was due to bias (Figure 5). Eight of the publications were considered to be high quality cohort studies (unbiased selection process, all important outcomes determined, and adequate follow-up). The mortality rates were much higher in the low- and moderate-quality group, owing primarily to one large cohort that had a very high mortality rate (13). However, the magnitude of treatment effects was similar in the two groups (OR 0.22 [0.03, 1.58] in high quality studies and 0.12 [0.01, 1.61] in low- and moderate- quality studies).

Discussion

To our knowledge this is the first meta-analysis aimed at summarizing the cohort data with regards to antiviral use during the 2009 pandemic. Our main findings are that early antiviral therapy (less than 48 hours after the onset of symptoms) was associated with a significantly decreased rate of ICU admission and death, compared with late therapy. This association was evident in the population in general as well as in the adult-only population, however there was insufficient data to draw conclusions about the pediatrics population. In contrast, patients who received antiviral therapy in general did not show improved rates of mortality or ICU admission compared to patients who did not receive antiviral therapy.

A meta-analysis of observational data with regard to therapy for influenza in general was recently published (14). Similar to our study, they noted that there are no randomized controlled trials of influenza treatment with data on mortality or other complications. Four studies were

Our main findings are that early antiviral therapy (less than 48 hours after the onset of symptoms) was associated with a significantly decreased rate of ICU admission and death, compared with late therapy.

included in their subgroup analysis looking at mortality in pH1N1 studies, and they were unable to demonstrate a benefit of oseltamivir over no therapy. When comparing early to late therapy (for pH1N1 and seasonal influenza), they showed a nonstatistically significant improvement in mortality (OR 0.39 [0.12, 1.30], and a statistically significant improvement in ICU admission (OR 0.22 [0.15, 0.33]). However many of these studies were not included in the final analysis due to a lack of adjustment for confounders.

Meta-analyses of observational studies are problematic in that they are subject to the same bias as original studies. The fact that patients who did not receive antiviral therapy had better or equivalent outcomes likely illustrates that they had less severe infections and therefore did not warrant treatment. On the other hand, patients who were treated late in the course of the disease may have had a delay in diagnosis and therefore more severe disease prior to initiating therapy. Unfortunately none of the studies captured in this review undertook a multivariate analysis to adjust for confounders. We did control for selection bias using a standardized quality assessment instrument, which strengthens the validity of this study's results.

Another useful role for meta-analyses of observational studies would be to comment on the overall quality of the literature and areas for future work. There were no randomized controlled trials found in our search, and there are unlikely to be such studies given the mounting evidence that neuraminidase inhibitors are useful in pH1N1 infection. To date, studies have mostly focused on symptom improvement and viral shedding as outcomes. Our main objective was to determine whether treatment affected clinical outcomes such as hospitalization, ICU admission and death. To ultimately answer this question there will likely need to be a well-designed case-control study or a large multi-site cohort study with careful multivariate analysis.

Another question of interest relates to the point at which delayed antiviral therapy is no longer effective, in particular with respect to hospitalized and critically ill patients. We used a cutoff of 48 hours from symptom onset based on current guidelines, but several of the studies used different time points to characterize their patients. Certainly individual practices vary with respect to this, and a further analysis looking at multiple time points may provide more insight.

In summary, early initiation of effective antiviral therapy was associated with both a reduction in mortality and in ICU admissions in pH1N1 infection. We were unable to demonstrate a beneficial effect associated with antiviral therapy in general. There was an immense body of literature generated during the H1N1 pandemic, however almost all studies demonstrated association rather than causality with respect to antiviral therapy. This meta-analysis serves to summarize the growing body of evidence supporting antiviral use in pH1N1. However more rigorous studies are still needed to help guide clinical practice.

Acknowledgements

We would like to thank Elizabeth Uleryk, Director of Library and Hospital Archives at the Hospital for Sick Children, for assisting us with the search strategy.

References

- Fiore AE, Fry A, Shay D, Gubareva L, Bresee JS, Uyeki TM. Centers for Disease Control and Prevention (CDC). Antiviral agents for the treatment and chemoprophylaxis of influenza -- Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2011 Jan 21;60(1):1-24.
- Hedrick JA, Barzilai A, Behre U, *et al.* Zanamivir for treatment of symptomatic influenza A and B infection in children five to twelve years of age: A randomized controlled trial. Pediatr Infect Dis J 2000;19:410--7.
- Lalezari J, Campion K, Keene O, *et al.* Zanamivir for the treatment of influenza A and B infection in high-risk patients: A pooled analysis of randomized controlled trials. Arch Intern Med 2001;161:212--7.
- Monto AS, Webster A, Keene O. Randomized, placebo-controlled studies of inhaled zanamivir in the treatment of influenza A and B: Pooled efficacy analysis. J Antimicrob Chemother 1999;44(Suppl B):23--9.

- MIST (Management of Influenza in the Southern Hemisphere Trialists). Randomised trial of efficacy and safety of inhaled zanamivir in treatment of influenza A and B virus infections. The MIST (Management of Influenza in the Southern Hemisphere Trialists) Study Group. Lancet 1998;352:1877--81.
- Heinonen S, Silvennoinen H, Lehtinen P, *et al.* Early oseltamivir treatment of influenza in children 1--3 years of age: A randomized controlled trial. Clin Infect Dis 2010;51:887--94.
- Jefferson T, Jones M, Doshi P, Del Mar C. Neuraminidase inhibitors for preventing and treating influenza in healthy adults: Systematic review and meta-analysis. BMJ. 2009 Dec 8;339:b5106. doi: 10.1136/bmj.b5106.
- Kaiser L, Wat C, Mills T, Mahoney P, Ward P, Hayden F. Impact of oseltamivir treatment on influenza-related lower respiratory tract complications and hospitalizations. Arch Intern Med. 2003 Jul 28;163(14):1667-72.
- 9. Aoki FY, Allen UD, Stiver HD, Evans GA. The use of antiviral drugs for influenza: Guidance for practitioners, 2010-11. AMMI Canada.
- 10 Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000 Apr 19;283(15):2008-12.
- Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, *et al.* The Newcastle Ottawa Scale. Ottawa Hospital Research

Institute. www.ohri.ca/programs/clinical_epidemiology/oxford.asp

- Siston AM, Rasmussen SA, Honein MA, Fry AM, Seib K, Callaghan WM, *et al.* Pandemic H1N1 Influenza in Pregnancy Working Group. Pandemic 2009 influenza A(H1N1) virus illness among pregnant women in the United States. JAMA. 2010 Apr 21;303(15):1517-25.
- Nukiwa N, Kamigaki T, Oshitani H. Fatal cases of pandemic (H1N1) 2009 influenza despite their early antiviral treatment in Japan. Clin Infect Dis. 2010 Oct 15;51(8):993-4. doi: 10.1086/656443.
- Hsu J, Santesso N, Mustafa R, Brozek J, Chen YL, Hopkins JP, *et al.* Antivirals for treatment of influenza: A systematic review and meta-analysis of observational studies. Ann Intern Med. 2012 Feb 27.

Table 1. Summary of studies used in the meta-analysis with respect to mortality, hospitalization and ICU admission.

			Trea	ntivirals		No treatment				
Author, year	Timing of antiviral therapy specified	No. of patients	No. of patients	Deaths	Hospitalized	ICU admission	No. of patients	Deaths	Hospitalized	ICU admission
Cheng 2010	Yes	16	16	0	16	0	0	0	0	0
Li 2010	Yes	146	118	0	118	0	27	0	27	0
Feiterna-Sperling 2010	Yes	15	5	0	0	0	10	0	1	10
Rubin 2010	No	4	0	0	0	0	4	0	0	0
Isais 2010	No	11	10	0		0	1	0		0
Liang 2009	Yes	10	10	0	10	0	0	0	0	0
Ridao-Cano 2010	No	13	13	0	7	0	0	0	0	0
Inusa 2010	No	21	21	0	19	1	0	0	0	0
Launes 2010	No	10	10	0	6	1	0	0	0	0
Jardim 2010	No	4	1	0	1	1	3	0	3	3
Yun 2010	No	18	18	0	1	1	0	0	0	0
Shinde 2009	No	11	4	0	2	2	6	0	2	0
Seville 2010	No	6	6	1	6	2	0	0	0	0
Couturier 2010	Ves	4	4	2	3	2	0	0	0	0
	No	22	22	1	22	2	0	0	0	0
Low 2010	No	0	0	2	0	2	0	0	0	0
Lalayanini 2010		0	0	3	0	<u> </u>	20	U	0	0
NicLean 2010	Yes	01	335	0	14	3	30	0	0	0
Nishiyama 2010	Yes	21	21	0	21	4	0	0	0	•
Bertisch 2010	Yes	15	15	0	14	6	0	0	0	0
Bantar 2009	NO NO	30	30	1	30	/	0	0	0	0
O'Riordan 2010	Yes	61	12	0	12	8	49	0	49	4
Langenegger	Yes	13	13	3	13	8	0	0	0	0
Hajjar 2010	Yes	8	8	5	8	8	0	0	0	0
CDC July2009	No	10	10	3	10	10	0	0	0	0
Lockman 2010	Yes	13	11	0	11	11	2	0	2	2
Gaüzère 2011	No	13	13	4	13	13	0	0	0	0
Kwan-Gett 2009	Yes	528	297		54	14	231		16	3
Vasoo 2010	Yes	32	22		22	15	10		10	1
Chudasama 2010	Yes	274	274	71	274	16	0	0	0	0
CDC Mar2009	Yes	17	17			17	0	0	0	0
Louie Jan2010	Yes	239	168		168	21	40		40	1
Cui 2010	Yes	68	68	10	68	30	0	0	0	0
Gooskens 2009	Yes	96	96	10	96	35	0	0	0	0
Kumar 2010	Yes	237	223	10	167	37	14	0	0	0
Zarychanski 2010	Yes	667	256		125	42	411		73	2
Jain 2009	No	272	200	17	200	56	68	2	68	9
Siston 2010	Yes	588	509	25	354	82	74	5	45	15
Farias 2010	Yes	147	135	52	135	135	12	5	12	12
Nukiwa 2010	Yes	254	200	158	158	158	54	40	54	54
Estenssoro 2010	No	337	328	150	328	328	8	5	8	8
Chan 2010	No	50	50	0	50		0	0	0	-
Ou 2009	No	150	140	0			10	0		
Zhou 2010	Yes	72	72	0	72		0	0	0	0
Ling 2010	Yes	70	70	0	70		0	0	0	0
Schreuder 2010	No	3	3	0	70		0	0	0	0
Morgan 2010	No	74	57	0			17	0	Ŭ	0
Shen 2010	Vec	237	236	0			1	0		
Jamicson 2000	Vee	237	17	1			17	0		
Louis Nov2010	Voc	210	221	6	221	 	17	0	09	
	Tes Vee	319	221	10	221		90	17	90	
	res	30	19	19				1/		
XI 2010	Yes	155	125	24			25	3		
Lee2010	Yes	4/	32	32	32					
Davies 2009	No	505	409	54	409		96	15	96	
D'Ortenzio 2010	Yes	171	92				79			
Fuhrman 2010	Yes	459	449							
Libster 2010	Yes	251	208				43			
Chitnis 2010	Yes	250	215		215		35		35	

	Treatm	ent	No Treat	ment		Odds Ratio Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% CI		
CDC Sept2009	19	19	17	17		Not estimable			
Davies 2009	54	409	15	96	30.1%	0.82 [0.44, 1.53]	- 		
Estenssoro 2010	150	328	5	8	5.5%	0.51 [0.12, 2.15]			
Farias 2010	52	135	5	12	8.1%	0.88 [0.26, 2.91]			
Feiterna–Sperling 2010	0	5	0	10		Not estimable			
Isais 2010	0	10	0	1		Not estimable			
Jain 2009	17	200	2	68	5.2%	3.07 [0.69, 13.63]			
Jamieson 2009	1	17	0	17	1.1%	3.18 [0.12, 83.76]			
Jardim 2010	0	1	0	3		Not estimable			
Kumar 2010	10	223	0	14	1.4%	1.43 [0.08, 25.57]			
Li 2010	0	118	0	27		Not estimable			
Lockman 2010	0	11	0	2		Not estimable			
Louie Nov2010	6	221	3	98	5.9%	0.88 [0.22, 3.61]			
Morgan 2010	0	57	0	17		Not estimable			
Nukiwa 2010	158	200	40	54	23.9%	1.32 [0.66, 2.64]	- + =		
O'Riordan 2010	0	12	0	49		Not estimable			
Ou 2009	0	140	0	10		Not estimable			
Shen 2010	0	236	0	1		Not estimable			
Shinde 2009	0	4	0	6		Not estimable			
Siston 2010	25	509	5	74	11.8%	0.71 [0.26, 1.92]			
Xi 2010	24	125	3	25	7.0%	1.74 [0.48, 6.30]	- -		
Total (95% CI)		2980		609	100.0%	1.03 [0.73, 1.44]			
Total events	516		95						
Heterogeneity: $Tau^2 = 0$.	00; Chi ² =	= 5.80,	df = 9 (P	= 0.76); $I^2 = 0\%$				
Test for overall effect: Z =	= 0.15 (P	= 0.88	3)			E-	U.UI U.I I 10 100		
						Fa	avours experimental ravours control		

Figure 1. Forest plot of studies comparing treatment to no treatment of patients with H1N1 infection with regards to mortality.

Figure 2. Subgroup analysis of studies comparing treatment to treatment of patients with H1N1 infection with regards to mortality in. A: Adult patients. B: Pediatric patients.

А

	Treatm	ent	No Treat	ment		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rand	om, 95% Cl
Bertisch	0	15	0	0		Not estimable		
CDC July2009	3	10	0	0		Not estimable		
Couturier	2	4	0	0		Not estimable		
Cui 2010	10	68	0	0		Not estimable		
Estenssoro 2010	150	328	5	8	21.8%	0.51 [0.12, 2.15]		
Gauzere 2011	4	13	0	0		Not estimable		
Gooskens 2009	10	96	0	0		Not estimable		
Hajjar 2010	5	8	0	0		Not estimable		
Isais 2010	0	10	0	1		Not estimable		
Jamieson 2009	1	17	0	17	4.3%	3.18 [0.12, 83.76]		
Lalyanni 2010	3	8	0	0		Not estimable		
Langenegger 2009	3	13	0	0		Not estimable		
Liang 2009	0	10	0	0		Not estimable		
Low 2010	1	22	0	0		Not estimable		
Seville 2010	1	6	0	0		Not estimable		
Siston 2010	25	509	5	74	46.3%	0.71 [0.26, 1.92]		
Xi 2010	24	125	3	25	27.6%	1.74 [0.48, 6.30]		
Yun 2010	0	18	0	0		Not estimable		
Total (95% CI)		1280		125	100.0%	0.90 [0.46, 1.77]		
Total events	242		13					
Heterogeneity: Tau ² =	0.00; Cł	$ni^2 = 2$.	43, df = 3	P = 0.	49); I ² =	0%	0.01 0.1	10 100
Test for overall effect:	Z = 0.30	(P = 0)	.77)			-	U.UI U.I	E IU IUU
		-	~			F	avours experimentai	ravours control

В

	Treatm	ient	No Treat	ment		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
CDC Sept2009	19	19	17	17		Not estimable	
Cheng 2010	0	16	0	0		Not estimable	
Farias 2010	52	135	5	12	58.3%	0.88 [0.26, 2.91]	
Feiterna-Sperling 2010	0	5	0	10		Not estimable	
Inusa 2010	0	21	0	0		Not estimable	
Jardim 2010	0	1	0	3		Not estimable	
Launes 2010	0	10	0	0		Not estimable	
Lockman 2010	0	11	0	2		Not estimable	
Louie Nov2010	6	221	3	98	41.7%	0.88 [0.22, 3.61]	
Nishiyama 2010	0	21	0	0		Not estimable	
O'Riordan 2010	0	12	0	49		Not estimable	
Rubin 2010	0	0	0	4		Not estimable	
Schreuder 2010	0	3	0	0		Not estimable	
Total (95% CI)		475		195	100.0%	0.88 [0.35, 2.19]	-
Total events	77		25				
Heterogeneity: $Chi^2 = 0.0$	0, df = 1	I (P = 0)).99); I ² =	0%			
Test for overall effect: Z =	= 0.27 (P	= 0.78	3)				0.01 0.1 1 1 10 100
						ſ	avours experimental ravours control

Figure 3. Forest plots of studies comparing patients treated within 48 hours of symptom onset with patients treated after 48 hours. A: Studies with mortality data. B: Studies with ICU admission data.

А

	<48 ho	ours	>48 ho	ours		Odds Ratio	Odds R	atio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random	, 95% CI
CDC Sept2009	4	4	15	15		Not estimable		
Cheng 2010	0	13	0	3		Not estimable		
Chitnis 2010	1	82	7	132	13.9%	0.22 [0.03, 1.83]		
Cui 2010	0	50	10	18	10.4%	0.01 [0.00, 0.15]	←	
Feiterna-Sperling 2010	0	5	0	0		Not estimable		
Langenegger 2009	0	8	3	5	9.1%	0.04 [0.00, 1.12]		
Lee2010	5	5	27	27		Not estimable		
Li 2010	0	83	0	35		Not estimable		
Liang 2009	0	5	0	5		Not estimable		
Ling 2010	0	36	0	34		Not estimable		
Lockman 2010	0	5	0	6		Not estimable		
Louie Nov2010	1	88	5	133	13.6%	0.29 [0.03, 2.56]		-
Nishiyama 2010	0	20	0	1		Not estimable		
Nukiwa 2010	104	134	54	66	20.4%	0.77 [0.37, 1.62]		
Shen 2010	0	186	0	50		Not estimable		
Siston 2010	1	219	24	165	14.3%	0.03 [0.00, 0.20]		
Xi 2010	4	16	20	109	18.3%	1.48 [0.43, 5.08]	-+•	
Total (95% CI)		959		804	100.0%	0.19 [0.05, 0.69]	-	
Total events	120		165					
Heterogeneity: Tau ² = 2.	00; Chi ² =	= 22.97	7, df = 6	(P = 0.	0008); I ²	= 74%		10 500
Test for overall effect: Z	= 2.51 (P	= 0.01	.)			r r	0.002 0.1 I	20 500

В

	<48 ho	ours	>48 ho	ours		Odds Ratio	Odds Rat	io
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, S	95% CI
CDC March 2009	1	1	16	16		Not estimable		
Cheng 2010	0	16	0	13		Not estimable		
Chitnis 2010	10	82	38	132	34.5%	0.34 [0.16, 0.74]	_ _	
Feiterna-Sperling 2010	0	5	0	0		Not estimable		
Langenegger 2009	3	8	5	5	4.0%	0.06 [0.00, 1.41]	← →	
Li 2010	0	83	0	35		Not estimable		
Liang 2009	0	5	0	5		Not estimable		
Lockman 2010	5	5	6	6		Not estimable		
Louie Jan2010	4	58	17	110	22.0%	0.41 [0.13, 1.27]	_ _	
Nukiwa 2010	134	134	66	66		Not estimable		
Siston 2010	13	219	52	165	39.4%	0.14 [0.07, 0.26]		
Total (95% CI)		616		553	100.0%	0.23 [0.12, 0.45]	•	
Total events	170		200					
Heterogeneity: Tau ² = 0.	18; Chi ² =	= 5.13,	df = 3 (P = 0.1	6); $I^2 = 4$	1%		10 100
Test for overall effect: Z =	= 4.35 (P	< 0.00)01)				0.01 0.1 I Eavours experimental Eav	ours control
						I	avours experimental ray	ours control

Figure 4. Forest plots of adult studies comparing patients treated within 48 hours of symptom onset with patients treated after 48 hours. A: Studies with mortality data. B: Studies with ICU admission data.

А

	<48 ho	urs	>48 ho	ours		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% (CI IV, Random, 95% CI
Cui 2010	0	50	10	18	22.9%	0.01 [0.00, 0.15	5] ←
Langenegger 2009	0	8	3	5	21.5%	0.04 [0.00, 1.12	2]
Liang 2009	0	5	0	5		Not estimab	e
Siston 2010	1	219	24	165	26.5%	0.03 [0.00, 0.20)]
Xi 2010	4	16	20	109	29.1%	1.48 [0.43, 5.08	3]
Total (95% CI)		298		302	100.0%	0.07 [0.00, 1.14	4]
Total events	5		57				
Heterogeneity: Tau ² =	6.46; Ch	$i^2 = 19$.17, df =	= 3 (P =	0.0003)	; $I^2 = 84\%$	
Test for overall effect:	Z = 1.86	(P = 0	.06)				Favours experimental Favours control

В

	<48 h	ours	>48 ho	ours		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
CDC March 2009	1	1	16	16		Not estimabl	e
Langenegger 2009	3	8	5	5	6.7%	0.06 [0.00, 1.41] ←
Liang 2009	0	5	0	5		Not estimabl	e
Louie Jan2010	4	58	17	110	34.5%	0.41 [0.13, 1.27	
Siston 2010	13	219	52	165	58.8%	0.14 [0.07, 0.26] —
Total (95% CI)		291		301	100.0%	0.19 [0.08, 0.44	
Total events	21		90				
Heterogeneity: Tau ² =	0.21; Cł	$1i^2 = 3.0$	09, df =	2 (P =	0.21); I ² :	= 35%	
Test for overall effect:	Z = 3.82	P = 0	.0001)				Favours experimental Favours control

Figure 5. Forest plots of high quality studies versus low-moderate quality studies comparing mortality in patients treated within 48 hours of symptom onset with patients treated after 48 hours. A: High quality studies. B: Low Quality studies.

	<48 ho	urs	>48 ho	ours		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Nishiyama 2010	0	20	0	1		Not estimable	
Ling 2010	0	36	0	34		Not estimable	
Liang 2009	0	5	0	5		Not estimable	
Shen 2010	0	186	0	50		Not estimable	
Cui 2010	0	50	10	18	19.7%	0.01 [0.00, 0.15]	←────
Chitnis 2010	1	82	7	132	24.9%	0.22 [0.03, 1.83]	
Louie Nov2010	1	88	5	133	24.6%	0.29 [0.03, 2.56]	
Xi 2010	4	16	20	109	30.8%	1.48 [0.43, 5.08]	
Total (95% CI)		483		482	100.0%	0.22 [0.03, 1.58]	
Total events	6		42				
Heterogeneity: Tau ² =	2.87; Ch	$i^2 = 11$.44, df =	= 3 (P =	: 0.010);	$I^2 = 74\%$	
Test for overall effect:	Z = 1.50	(P = 0)	.13)			F	avours experimental Favours control

В

А

	<48 ho	ours	>48 ho	ours		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
CDC Sept2009	4	4	15	15		Not estimable	
Cheng 2010	0	13	0	3		Not estimable	
Feiterna-Sperling 2010	0	8	3	5	25.3%	0.04 [0.00, 1.12]	← ■
Langenegger 2009	0	0	0	0		Not estimable	
Lee2010	5	5	27	27		Not estimable	
Li 2010	0	83	0	35		Not estimable	
Lockman 2010	0	5	0	6		Not estimable	
Nukiwa 2010	104	134	54	66	40.9%	0.77 [0.37, 1.62]	
Siston 2010	1	219	24	165	33.8%	0.03 [0.00, 0.20]	←∎────
Zhou 2010	0	72	0	0		Not estimable	
Total (95% CI)		543		322	100.0%	0.12 [0.01, 1.61]	
Total events	114		123				
Heterogeneity: Tau ² = 4.1	18; Chi ² =	= 11.52	2, df = 2	(P = 0.	003); I ² =	= 83%	
Test for overall effect: Z =	= 1.60 (P	= 0.11	.)			F	avours experimental Favours control

Supplemental Data A: Detailed Search strategy

Medline/Ovid and Embase were searched using the following search strategy:

- 1. influenza a virus/ or influenza a virus, h1n1 subtype/
- (h1n1 or (swine adj2 (flu or flus or influenza*))).mp.
- 3. 1 or 2
- 4. exp Antiviral Agents/ or (tamiflu or "gs-4071" or "gs 4071" or gs4071 or oseltamivir or zanamivir or relenza or "gg 167" or "gg-167" or gg167 or amantadin* or amantadinneuraxpharm or aman or amantahciazu or mantadix or cerebramed or tregor or midantan or pmsamantadine or "infecto-flu" or "infectoflu" or infectoflu or wiregyt or aminoadamantane or symmetrel or amantasulfateazu or adamantylamine or endantadine or symadine or genamantadine or amixx or adekin or viregyt or infex or RIMANTADINE or rimantadine or roflual or flumadine).mp.
- 5. 3 and 4
- 6. cohort studies/ or longitudinal studies/ or follow-up studies/ or prospective studies/
- 7. case-control studies/ or retrospective studies/
- 8. prognosis/ or disease-free survival/ or treatment outcome/ or treatment failure/
- prognosis/ or disease-free survival/ or medical futility/ or pregnancy outcome/ or treatment outcome/ or treatment failure/
- 10. disease progression/
- 11. morbidity/ or incidence/ or prevalence/ or mortality/ or "cause of death"/ or child mortality/ or fatal outcome/ or fetal mortality/ or hospital mortality/ or infant mortality/ or maternal mortality/ or perinatal mortality/ or survival rate/
- 12. survival analysis/ or disease-free survival/
- 13. natural history.mp.
- 14. or/6-13
- 15. 5 and 14
- 16. ("clinical trial, all" or clinical trial).pt. or clinical trials as topic/
- 17. clinical trial, phase i.pt. or clinical trials, phase i as topic/
- 18. clinical trial, phase ii.pt. or clinical trials, phase ii as topic/
- 19. clinical trial, phase iii.pt. or clinical trials, phase iii as topic/
- 20. clinical trial, phase iv.pt. or clinical trials, phase iv as topic/

- 21. controlled clinical trial.pt. or controlled clinical trials as topic/
- 22. meta-analysis.pt. or meta-analysis as topic/
- 23. multicenter study.pt. or multicenter studies as topic/
- 24. randomized controlled trial.pt. or randomized controlled trials as topic/
- 25. control groups/ or double-blind method/ or random allocation/ or single-blind method/
- 26. or/16-25
- 27. 5 and 26
- 28. 15 or 27
- limit 5 to (case reports or guideline or letter or practice guideline or "review" or government publications)
- 30. 29 not 28
- 31. limit 30 to yr="2009 -Current"
- 32. limit 28 to yr="2009 -Current"

Revised with:

- 1. influenza a virus/ or influenza a virus, h1n1 subtype/
- (h1n1 or (swine adj2 (flu or flus or influenza*))).mp.
- 3. 1 or 2
- 4. exp Antiviral Agents/ or (tamiflu or "gs-4071" or "gs 4071" or gs4071 or oseltamivir or zanamivir or relenza or "gg 167" or "gg-167" or gg167 or amantadin* or amantadinneuraxpharm or aman or amantahciazu or mantadix or cerebramed or tregor or midantan or pmsamantadine or "infecto-flu" or "infectoflu" or infectoflu or wiregyt or aminoadamantane or symmetrel or amantasulfateazu or adamantylamine or endantadine or symadine or genamantadine or amixx or adekin or viregyt or infex or RIMANTADINE or rimantadine or roflual or flumadine).mp. or disease outbreaks/ or disease transmission/ or hospitalization/
- 5. 3 and 4
- 6. limit 5 to yr="2009 -Current"
- 7. prophyla*.mp.
- 8. 6 and 7
- 9. 6 not 8

Supplemental Data B: Studies included in the meta-analysis.

Author, Year	Citation	Study Design	Adult versus Pediatrics	Outpatient/ Inpatient/ ICU	Immunoc- ompromised	Number of patients
Estenssoro 2010	American Journal of Respiratory & Critical Care Medicine 182(1): 41-48.	Cohort	Adult	ICU	No	337
Hajjar 2010	Annals of Oncology 21(12): 2333-2341.	Cohort	Adult	Inpatient	Yes	8
Louie Nov2010	Arch Pediatr Adolesc Med. 2010 Nov;164(11):1023-31.	Cohort	Peds	Inpatient	No	319
Ou 2009	Biosci Trends. 2009 Aug;3(4):127-30.	Cohort	Did not separate adults/peds	Outpatient	No	150
Inusa 2010	Blood. 2010 Mar 18;115(11):2329-30.	Cohort	Peds	Outpatient	Yes	21
Xi 2010	BMC Infect Dis. 2010 Aug 27;10:256.	Cohort	Adult	Inpatient	No	155
Cui 2010	BMC Infect Dis. 2010 May 31;10:145.	Cohort	Adult	Inpatient	No	68
Launes 2010	Br J Haematol. 2010 Jun;149(6):874-8. Epub 2010 Mar 21.	Cohort	Peds	Inpatient	Yes	10
Cheng 2010	Br J Haematol. 2010 Oct;151(2):202-6. doi: 10.1111/j.1365- 2141.2010.08351.x. Epub 2010 Aug 25.	Cohort	Peds	Inpatient	Yes	16
Li 2010	Chest. 2010 Apr;137(4):759-68. Epub 2010 Jan 8.	Case- Control	Did not separate adults/peds	Outpatient	No	146
Zhou 2010	Chinese Medical Journal 123(19): 2651-2654.	Cohort	Did not separate adults/peds	Outpatient	No	72
Ling 2010	Clin Infect Dis. 2010 Apr 1;50(7):963-9.	Cohort	Did not separate adults/peds	Inpatient	No	70
Lee2010	Clin Infect Dis. 2010 Jun 1;50(11):1498-504.	Cohort	Did not separate adults/peds	Outpatient	No	47
Schreuder 2010	Clin Infect Dis. 2010 May 15;50(10):1427-8.	Cohort	Peds	Inpatient	No	3
Vasoo 2010	Clin Infect Dis. 2010 May 15;50(10):1428-9.	Cohort	Did not separate adults/peds	Inpatient	No	32
Nukiwa 2010	Clin Infect Dis. 2010 Oct 15;51(8):993-4.	Case- Control	Did not separate adults/peds	ICU	No	254
Bantar 2009	Clinical Infectious Diseases 49(9): 1458-1460.	Cohort	Did not separate adults/peds	ICU	No	30
Feiterna- Sperling 2010	Clinical Infectious Diseases 51(11): e90-e94.	Cohort	Peds	Outpatient	Yes	15
D'Ortenzio 2010	Clinical Microbiology & Infection 16(4): 309-316.	Cohort	Did not separate adults/peds	Outpatient	No	171
Zarychanski 2010	CMAJ. 2010 Feb 23;182(3):257-64. Epub 2010 Jan 21.	Case- Control	Did not separate adults/peds	Outpatient	No	667
O'Riordan 2010	CMAJ. 2010 Jan 12;182(1):39-44. Epub 2009 Nov 19.	Cohort	Peds	Inpatient	No	61
Kwan-Gett 2009	Disaster Med Public Health Prep. 2009 Dec;3 Suppl 2:S109-16.	Cohort	Did not separate adults/peds	Outpatient	No	528
Jardim 2010	Early Human Development 86: S75-S76.	Abstract	Peds	Inpatient	No	4
Morgan 2010	Emerg Infect Dis. 2010 Apr;16(4):631-7.	Cohort	Did not separate adults/peds	Outpatient	No	74
Shen 2010	Emerg Infect Dis. 2010 Jun;16(6):1011-3.	Cohort	Did not separate adults/peds	Outpatient	No	237
Gaüzère 2011	Emerging Infectious Diseases 17(1): 140-141.	Cohort	Adult	ICU	No	13
McLean 2010	Epidemiol Infect. 2010 Nov;138(11):1531-41. Epub 2010 Jul 1.	Cohort	Did not separate adults/peds	Outpatient	No	365
Rubin 2010	Eur J Pediatr. 2010 Sep;169(9):1159-61. Epub 2010 Mar 7.	Cohort	Peds	Outpatient	No	4
Nishiyama 2010	Euro Surveill. 2010 Sep 9;15(36). pii: 19659.	Cohort	Peds	Inpatient	No	21
Fuhrman 2010	Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin 15(2): 14.	Cohort	Did not separate adults/peds	Inpatient	No	459
Chudasama 2010	Indian Journal of Critical Care Medicine 14(3): 113-120.	Cohort	Did not separate adults/peds	Inpatient	No	274
Couturier 2010	Influenza Other Respi Viruses. 2010 Jul;4(4):199-204.	Cohort	Adult	Outpatient	Yes	4

Supplemental Data B: Studies included in the meta-analysis Continued

Author, Year	Citation	Study Design	Adult versus Pediatrics	Outpatient/ Inpatient/ ICU	Immunoc- ompromised	Number of patients
Farias 2010	Intensive Care Med. 2010 Jun;36(6):1015-22. Epub 2010 Mar 18.	Cohort	Peds	ICU	No	147
Matos 2010	Intensive Care Medicine 36: S319.	Conference Abstract	Adult	ICU	No	429
Gooskens 2009	JAMA - Journal of the American Medical Association 301(10): 1042-1046.	Cohort	Adult	Inpatient	No	96
Davies 2009	JAMA - Journal of the American Medical Association 302(17): 1888-1895.	Cohort	Did not separate adults/peds	ICU	No	505
Siston 2010	JAMA - Journal of the American Medical Association 303(15): 1517-1525.	Cohort	Adult	Outpatient	No (pregnant)	588
Lalayanni 2010	Journal of Infection 61(3): 270-272.	Cohort	Adult	Inpatient	Yes	8
Isais 2010	Journal of Infection 61(5): 437-440.	Case- Control	Adult	Outpatient	Yes	11
Yun 2010	Korean J Radiol. 2010 Jul-Aug;11(4):417-24. Epub 2010 Jun 21.	Cohort	Adult	Outpatient	No	18
Kumar 2010	Lancet Infect Dis. 2010 Aug;10(8):521-6. Epub 2010 Jul 9.	Cohort	Did not separate adults/peds	Outpatient	Yes	237
Jamieson 2009	Lancet. 2009 Aug 8;374(9688):451-8. Epub 2009 Jul 28.	Cohort	Adult	Outpatient	No (pregnant)	34
CDC July2009	MMWR Morb Mortal Wkly Rep. 2009 Jul 17;58(27):749-52.	Cohort	Adult	ICU	No	10
CDC Sept2009	MMWR Morb Mortal Wkly Rep. 2009 Sep 4;58(34):941-7.	Cohort	Peds	Outpatient	No	36
CDC Mar2009	MMWR Morb Mortal Wkly Rep. 2010 Mar 26;59(11):321-6.	Cohort	Adult	ICU	No (pregnant)	17
Shinde 2009	N Engl J Med. 2009 Jun 18;360(25):2616-25. Epub 2009 May 7.	Cohort	Did not separate adults/peds	Outpatient	No	11
Jain 2009	N Engl J Med. 2009 Nov 12;361(20):1935-44. Epub 2009 Oct 8.	Cohort	Did not separate adults/peds	Inpatient	No	272
Louie Jan2010	N Engl J Med. 2010 Jan 7;362(1):27-35. Epub 2009 Dec 23.	Cohort	Adult	Inpatient	No	239
Libster 2010	New England Journal of Medicine 362(1): 45-55.	Cohort	Peds	Inpatient	No	251
Lockman 2010	Pediatr Crit Care Med. 2010 Mar;11(2):173-8.	Cohort	Peds	ICU	No	13
Liang 2009	Singapore Med J. 2009 Jun;50(6):581-3.	Cohort	Adult	Outpatient	No	10
Bertisch 2010	Swiss Med Wkly. 2010 Jul 15;140:w13069. doi: 10.4414/ smw.2010.13069.	Cohort	Adult	Inpatient	No	15
Ridao-Cano 2010	Transplantation. 2010 Jul 27;90(2):224-5.	Cohort	Did not separate adults/peds	Outpatient	Yes	13
Low 2010	Transplantation. 2010 Nov 15;90(9):1016-21.	Cohort	Adult	Inpatient	Yes	22
Seville 2010	Transplantation. 2010 Sep 15;90(5):571-4.	Cohort	Adult	Inpatient	Yes	6
Chitnis 2010	WMJ. 2010 Aug;109(4):201-8.	Cohort	Did not separate adults/peds	Inpatient	No	250

NCCID #150 ISBN # 978-1-927988-03-9

National Collaborating Centre for Infectious Diseases

Centre de collaboration nationale des maladies infectieuses

515 PORTAGE AVENUE, WINNIPEG, MB R3B 2E9 204.943.0051 NCCID@ICID.COM WWW.NCCID.CA

Production of this document has been made possible through a financial contribution from the Public Health Agency of Canada. The views expressed herein do not necessarily represent the views of the Public Health Agency of Canada.